Файл к уроку
Решение уравнений с параметрами.
Не так давно 8 класс познакомился с квадратными уравнениями и алгоритмами их решения. Сегодня мы рассмотрим еще один вид уравнений, который часто встречается на олимпиадах и турнирах, и включен в ЕГЭ по профильной математике – это уравнения с параметром. Что такое параметр? Обычно это число, в зависимости от значения которого уравнение, будь оно линейным или квадратным, может иметь корни, а может их не иметь.
Задачи с параметрами считаются сложными ,однако если разобраться досконально, из каких шагов состоит путь к решению уравнения, то параметр уже не кажется такой злобной величиной.
Линейные уравнения с параметрами.
Уравнение вида
где a, b из R, x - переменная, называется уравнением первой степени (линейным уравнением).
Уравнение равносильно уравнению
ax = – b
откуда следует следующее утверждение.
Если a ≠ 0, то уравнение имеет единственное решение x = – b/a;
Если a = 0, b ≠ 0, то множество решений уравнения пусто;
Если a = 0, b = 0, то любое действительное число является решением уравнения.
Решить уравнение с параметром – значит указать решение при всех значениях параметра, то есть фактически решить бесконечное множество уравнений, объединив их в одно по неким схожим зависимостям от параметра.
Пример 1. Решить уравнение: a2x – 1 = x + a.
Пример 2. Решить уравнение с параметром |6 – x| = a.
Решение.
Легко видеть, что здесь a ≥ 0.
По правилу модуля 6 – x = ±a, выразим х:
x = 6 ± a.
Ответ: х = 6 ± a, где a ≥ 0.
Пример 3. Решить уравнение x/a + 1 = а + х относительно переменной х.
Решение.
Если а = 0, то преобразуем уравнение к виду а + х = а2 + ах или (а – 1)х = -а(а – 1). Последнее уравнение при а = 1 имеет вид 0 · x = 0, следовательно, х – любое число.
Если а ≠ 1, то последнее уравнение примет вид х = -а.
Данное решение можно проиллюстрировать на координатной прямой (рис. 1)
Ответ: нет решений при а = 0; х – любое число при а = 1; х = -а при а ≠ 0 и а ≠ 1.
Пример 4. При каких значениях параметра b уравнение не имеет корней: 
Графический метод
Рассмотрим еще один способ решения уравнений с параметром – графический. Этот метод применяется достаточно часто.
Пример 5. Сколько корней в зависимости от параметра a имеет уравнение ||x| – 2| = a?
Решение. Для решения графическим методом строим графики функций y = ||x| – 2| и y = a (рис. 2).

На чертеже наглядно видны возможные случаи расположения прямой y = a и количество корней в каждом из них.
Ответ: корней у уравнения не будет, если а a 2 и а = 0; три корня уравнение будет иметь в случае а = 2; четыре корня – при 0 a
Пример 6. При каком а уравнение 2|x| + |x – 1| = a имеет единственный корень?
Решение.
Изобразим графики функций y = 2|x| + |x – 1| и y = a. Для y = 2|x| + |x – 1|, раскрыв модули методом промежутков, получим:
{-3x + 1, при x
y = {x + 1, при 0 ≤ x ≤ 1,
{3x – 1, при x 1.
На рисунке 3 хорошо видно, что единственный корень уравнение будет иметь только при а = 1.

Ответ: а = 1.
Пример 7. При каких значениях параметра а неравенство имеет решением все действительные числа:

Системы линейных уравнений с параметрами.

– Система имеет единственное решение.
– Система имеет бесконечное множество решений.
– Система не имеет решений.
Пример 8. Для всех значений параметра а решить систему уравнений

Квадратичные уравнения с параметрами.
Решение уравнений второй степени сводится к исследованию поведения квадратного трехчлена, исследованию знака дискриминанта при различных значениях параметра. Часто при решении нам может помочь теорема Виета, когда вопрос стоит о корнях разных знаков, о корнях одного знака.
Квадратное уравнение
может не иметь решений (Da=0 или D=0), два решения (D0) или бесконечное множество решений (когда при каком-то значении параметра получаем 0=0).



Пример 9. Решить уравнение в зависимости от параметра а:

Пример 10. При каких значениях
корни уравнения
положительны?
Пример 11. Найти значения параметра а, при которых среди корней уравнения имеется ровно один отрицательный: 
Пример 12. Найти все значения параметра а, при которых уравнение имеет два различных отрицательных корня:

Пример 13. При каких значениях m корни уравнения 4x² – (3m + 1) x – m – 2 = 0 лежат в промежутке между –1 и 2?
Пример 14: Найти все значения параметра а, при которых меньший корень уравнения x² + (a + 1) x + 3 = 0 лежал в интервале (–1; 3)