Спирты и фенолы.

На этом занятии будут рассмотрены основные химические свойства  предельных одноатомных и многоатомных спиртов и фенолов, получение спиртов в лаборатории и промышленности. Будут показаны подробные решения расчетных задач и тестов ЕГЭ по заданной теме.

Конспект занятия "Спирты и фенолы."

Спирты

Строение

Спиртами (или алканолами) называются органические вещества, молекулы которых содержат одну или несколько гидроксильных групп (групп —ОН), соединенных с углеводородным радикалом.


По числу гидроксильных групп (атомности) спирты делятся на:
•    одноатомные
•    двухатомные (гликоли)
•    трехатомные.

Одноатомные спирты:

Двухатомный спирт:

Трехатомный спирт:

CH3—OH
метанол (метиловый спирт)

CH3CH2—OH
этанол (этиловый спирт)

HO—CH2—CH2—OH
этандиол-1,2 (этиленгликоль)


пропантриол-1,2,3 (глицерин)

Одноатомные спирты

Общая формула одноатомных спиртов - R—OH.

По типу углеводородного радикала спирты делятся на предельные, непредельные и ароматические.

Предельный спирт:

Непредельный спирт:

Ароматический спирт:

CH3CH2CH2—OH
пропанол-1 (пропиловый спирт)

CH2=CH—CH2—OH
пропенол-2,1 (аллиловый спирт)

C6H5—CH2—OH
фенилметанол (бензиловый спирт)

Общая формула предельных одноатомных спиртов - CnN2n+1—OH.

Органические вещества, содержащие в молекуле гидроксильные группы, непосредственно связанные с атомами углерода бензольного кольца называются фенолами. Например, C6H5—OH - гидроксобензол (фенол).

По типу атома углерода, с которым связана гидроксильная группа, различают первичные (R—CH2—OH), вторичные (R—CHOH—R') и третичные (RR'R''C—OH) спирты.





Первичный спирт:

Вторичный спирт:

Третичный спирт:

CH3CH2CH2CH2—OH
бутанол-1 (бутиловый сприт)


бутанол-2 (втор-бутиловый спирт)


2-метилпропанол-2 (трет-бутиловый спирт)

CnN2n+2O - общая формула и предельных одноатомных спиртов, и простых эфиров.

Предельные одноатомные спирты изомерны простым эфирам - соединениям с общей формулой R—O—R'.

Изомеры и гомологи

Для спиртов характерна структурная изомерия (изомерия углеродного скелета, изомерия положения заместителя или гидроксильной группы), а также межклассовая изомерия.













Алгоритм составления названий одноатомных спиртов

  1. Найдите главную углеродную цепь - это самая длинная цепь атомов углерода, с одним из которых связана функциональная группа.

  2. Пронумеруйте атомы углерода в главной цепи, начиная с того конца, к которому ближе функциональная группа.

  3. Назовите соединение по алгоритму для углеводородов.

  4. В конце названия допишите суффикс -ол и укажите номер атома углерода, с которым связана функциональная группа.

Физические свойства спиртов во многом определяются наличием между молекулами этих веществ водородных связей:



С этим же связана и хорошая растворимость в воде низших спиртов. 
Простейшие спирты - жидкости с характерными запахами. С увеличением числа атомов углерода температура кипения возрастает, а растворимость в воде падает. Температура кипения у первичных спиртов больше, чем у вторичных спиртов, а у вторичных - больше, чем у третичных. Метанол крайне ядовит.

Химические свойства спиртов

  1. Горение:

C2H5OH + 3O2  2CO2 +3H2O + Q



  1. Реакции с щелочными и щелочноземельными металлами ("кислотные" свойства):
    Атомы водорода гидроксильных групп молекул спиртов, также как и атомы водорода в молекулах воды, могут восстанавливаться атомами щелочных и щелочноземельных металлов ("замещаться" на них).

2Na + 2H—O—H  2NaOH + H2
2Na + 2R—O—H  2RONa + H
2


С твердыми щелочами и с их растворами спирты не реагируют.

  1. Реакции с галогеноводородами:

C2H5OH + HBr  C2H5Br + H2O



  1. Внутримолекулярная дегидратация (t 140oС, образуются алкены):

C2H5OH  C2H4 + H2O



  1. Межмолекулярная дегидратация (t oС, образуются простые эфиры):

2C2H5OH  C2H5OC2H5 + H2O



  1. Окисление (мягкое, до альдегидов):

CH3CH2OH + CuO  CH3—CHO + Cu + H2O

Это качественная реакция на спирты: цвет осадка изменяется с черного на розовый, ощущается своеобразный "фруктовый" запах альдегида).

Получение спиртов

  1. Щелочной гидролиз галогеналканов (лабораторный способ): C2H5Cl + NaOH C2H5OH + NaCl.

  2. Гидратация алкенов: C2H4 + H2 C2H5OH.

  3. Брожение глюкозы : C6H12O6  2C2H5OH + 2CO2.

  4. Синтез метанола: CO + 2H2  CH3OH



Многоатомные спирты

Существуют и полиатомные (многоатомные) спирты, содержащие более трех гидроксильных групп в молекуле. Например, простейший шестиатомный спирт гексаол (сорбит).


Следует заметить, что спирты, содержащие две гидроксильные группы при одном атоме углерода, неустойчивы и самопроизвольно разлагаются (подвергаются перегруппировке атомов) с образованием альдегидов и кетонов:



Непредельные спирты, содержащие гидроксильную группу у атома углерода, связанного двойной связью, называются еколами. Нетрудно догадаться, что название этого класса соединений образовано из суффиксов -ен и -ол, указывающих на присутствие в молекулах двойной связи и гидроксильной группы. Енолы, как правило, неустойчивы и самопроизвольно превращаются (изомеризуются) в карбонильные соединения — альдегиды и кетоны. Эта реакция обратима, сам процесс называют кето-енольной таутомерией. Так, простейший енол — виниловый спирт чрезвычайно быстро изомеризуется в уксусный альдегид.

Примерами многоатомных спиртов является двухатомный спирт этандиол (этиленгликоль) HO—CH2—CH2—OH и трехатомный спирт пропантриол-1,2,3 (глицерин) HO—CH2—CH(OH)—CH2—OH. 

Это бесцветные сиропообразные жидкости, сладкие на вкус, хорошо растворимы в воде. Этиленгликоль ядовит.



Химические свойства многоатомных спиртов по большей части сходны с химическими свойствами одноатомных спиртов, но кислотные свойства из-за влияния гидроксильных групп друг на друга выражены сильнее.

Качественной реакцией на многоатомные спирты является их реакция с гидроксидом меди(II) в щелочной среде, при этом образуется ярко-синие растворы сложных по строению веществ. Например, для глицерина состав этого соединения выражается формулой Na2[Cu(C3H6O3)2].



Отдельные представители спиртов и их значение

Этанол широко используется в промышленности для производства синтетического каучука, лекарственных препаратов, применяется как растворитель, входит в состав лаков и красок, парфюмерных средств. В медицине этиловый спирт — важнейшее дезинфицирующее средство. Используется для приготовления алкогольных напитков.

Небольшие количества этилового спирта при попадании в организм человека снижают болевую чувствительность и блокируют процессы торможения в коре головного мозга, вызывая состояние опьянения. На этой стадии действия этанола увеличивается водоотделение в клетках и, следовательно, ускоряется мочеобразование, в результате чего происходит обезвоживание организма.

Кроме того, этанол вызывает расширение кровеносных сосудов. Усиление потока крови в кожных капиллярах приводит к покраснению кожи и ощущению теплоты.

В больших количествах этанол угнетает деятельность головного мозга (стадия торможения), вызывает нарушение координации движений. Промежуточный продукт окисления этанола в организме — ацетальдегид — крайне ядовит и вызывает тяжелое отравление.

Систематическое употребление этилового спирта и содержащих его напитков приводит к стойкому снижению продуктивности работы головного мозга, гибели клеток печени и замене их соединительной тканью — циррозу печени.
















Фенолы



Фено́лы — органические соединения ароматического ряда, в молекулах которых гидроксильные группы связаны с атомами углерода ароматического кольца.



По числу ОН-групп различают:

одноатомные фенолы (аренолы): фенол (C6H5OH) и его гомологи;
двухатомные фенолы (арендиолы): гидрохинон, пирокатехин, резорцин;
трёхатомные фенолы (арентриолы): пирогаллол, флороглюцин, гидроксигидрохинон и т. д.

Важнейшим представителем фенолов является фенол (гидроксобензол, старые названия - гидроксибензол, оксибензол) C6H5—OH.

а) б)

Шаростержневая (а) и масштабная модели молекулы фенола



Изомерия

Возможны 2 типа изомерии:

1. Изомерия положения заместителей в бензольном кольце;
2. Изомерия боковой цепи (строения алкильного радикала и числа радикалов).



В живых организмах

Фенол является окончанием боковой группы стандартной аминокислоты тирозина, и поэтому входит в состав практически каждой белковой молекулы.









Электронное строение

Фенолы представляют собой полярные соединения (диполи). Бензольное кольцо является отрицательным концом диполя, группа — OH — положительным. Дипольный момент направлен в сторону бензольного кольца.
Как известно, гидроксильная группа -OH является заместителем I рода, то есть она способствует повышению электронной плотности в бензольном кольце (особенно в орто- и пара-положениях. Смещение не поделённой пары электронов атома кислорода в сторону бензольного кольца приводит к увеличению полярности связи O-H. Таким образом, имеет место взаимное влияние атомов и атомных групп в молекуле фенола. Это взаимное влияние отражается в свойствах фенола.

Во-первых, повышается способность к замещению атомов водорода в орто- и пара-положениях бензольного ядра, и в результате реакций замещения обычно образуются три-замещённые производные фенола.

Во-вторых, увеличение полярности связи O-H под действием бензольного ядра и появление достаточно большого положительного заряда на атоме водорода приводит к тому, что молекулы фенола диссоциируют в водных растворах по кислотному типу.

Фенол является слабой кислотой. В этом состоит главное отличие фенолов от спиртов, которые являются неэлектролитами.

Физические свойства фенола:

Большинство одноатомных фенолов при нормальных условиях представляют собой бесцветные кристаллические вещества с невысокой температурой плавления и характерным запахом. Фенолы малорастворимы в воде, хорошо растворяются в органических растворителях, токсичны, при хранении на воздухе постепенно темнеют в результате окисления. Фенол C6H5OH (карболовая кислота) — бесцветное кристаллическое вещество на воздухе окисляется и становится розовым, при обычной температуре ограниченно растворим в воде, выше 66 °C смешивается с водой в любых соотношениях. Фенол — токсичное вещество, вызывает ожоги кожи, является антисептиком!





Химические свойства

  1. Кислотные свойства. Кислотные свойства фенола выражены сильнее, чем у воды и предельных спиртов, что связано с большей полярностью O—H связи и с большей устойчивостью образующегося при ее разрыве фенолят-иона. В отличие от спиртов, фенолы реагируют не только со щелочными и щелочноземельными металлами, но и с растворами щелочей, образуя феноляты:

2C6H5OH + 2Na 

2C6H5ONa

+ H2


фенолят натрия


C6H5OH + NaOH  C6H5ONa + H2O


Однако кислотные свойства фенола выражены слабее, чем у карбоновых кислот и, тем более, у сильных неорганических.

  1. Замещение в бензольном кольце. Наличие гидроксильной группы в качестве заместителя в молекуле бензола приводит к перераспределению электронной плотности в сопряженной -системе бензольного кольца, при этом увеличивается электронная плотность у 2-го, 4-го и 6-го атомов углерода (орто- и пара-положения) и уменьшается у 3-го и 5-го атомов углерода (мета-положение).

    а) Реакция с бромной водой (качественная реакция):

+ 3Br2 

+ 3HBr

Образуется 2,4,6-трибромфенол - осадок белого цвета.


б) Нитрование (при комнатной температуре):

C6H5—OH + HNO3(разб.)  H2O + NO2—C6H4—OH (смесь орто- и пара-изомеров)

+ 3HNO3(конц.)  3H2O +

По второй реакции образуется 2,4,6-тринитрофенол (пикриновая кислота).



  1. Поликонденсация фенола с формальдегидом (по этой реакции происходит образование фенолформальдегидной смолы):





  1. Качественная реакция с хлоридом железа(III). Образуется комплексное соединение фиолетового цвета.



Получение фенола

 

Современной промышленности известно несколько способов получения фенола:

 

  1. Кумольный метод получения.





Гидропероксид кумола (ГПК) получают при нормальном (без использования катализаторов) окислении воздухом кумола в каскаде барботажных колонн. А фенол и ацетон получают в ходе разложения ГПК с использованием в качестве катализатора серной кислоты.



  1. Получение фенола путем сплавления ароматических сульфокислот со щелочами.

На феноксиды, образованные в результате сплавления ароматических сульфокислот с щелочами, оказывают воздействие сильными кислотами. В результате получаются многоатомные свободные фенолы.



  1. Получение фенола путем воздействия на галогенбензолы:

 

С6Н5-Сl + 2NaOH C6H5-ONa + NaCl + Н2О

 

Фенолят натрия получают при взаимодействии гидроксида натрия и хлорбензола. Обязательным катализатором в данной реакции является давление. Далее фенолят натрия обрабатывают кислотой.





Применение фенола

Фенолы применяют в производстве различных феноло-альдегидных смол, полиамидов, полиарилатов, полиариленсульфонов, эпоксидных смол, антиоксидантов, бактерицидов и пестицидов (например, нитрафен). Алкилфенолы используют в производстве ПАВ, стабилизаторов и присадок к топливам. Двухатомные фенолы и их производные входят в состав дубителей для кожи и меха, модификаторов и стабилизаторов резин и каучуков, применяются для обработки кино- и фотоматериалов. В медицине фенолы и их производные используют в качестве антимикробных (фенол, резорцин), противовоспалительных (салол, осарсол), спазмолитических (адреналин, папаверин), жаропонижающих (аспирин, салициловая кислота), слабительных (фенолфталеин), адренолитических (мезатон), вяжущих (таннины) и других лекарственных средств, а также витаминов E и P.




































Задания по теме для самостоятельного решения

Задание 1

(2 балла)

Изомерами по отношению друг к другу являются вещества в парах:

а) этиленгликоль и глицерин;

б) диэтиловый эфир и третичный бутиловый спирт;

в) 2-метилпропанол-1 и вторичный бутиловый спирт;

г) фенолят натрия и фенол.

1) а, б; 2) б, в; 3) в, г; 4) а, г

Задание 2

(2 балла)

Атом кислорода в молекуле фенола образует:

1) одну σ- и одну π-связи;

2) две σ-связи;

3) одну σ-связь;

4) две σ- и две π-связи.

Задание 3

(2 балла)

Bнутримолекулярная дегидратация спиртов приводит к образованию:

1) альдегидов;

2) алканов;

3) алкенов;

4) алкинов.

Проверить правильность выполнения заданий вы можете в автоматическом режиме в разделе домашние задания на странице с курсом "Химия Подготовка к ЕГЭ 2017"
Следующий урок на тему " Альдегиды."
Предыдущий урок на тему " Ароматические углеводороды."