Алканы.

На этом занятии будут рассмотрены основные химические свойства предельных углеводородов и их получение в лаборатории и промышленности. Будут показаны подробные решения расчетных задач и тестов ЕГЭ по заданной теме

Конспект занятия "Алканы."

Алканы.Строение алканов

Алканы (парафины) – алифатические (нециклические) предельные углеводороды, в которых атомы углерода связаны между собой простыми (одинарными) связями в неразветвленные или разветвленные цепи.

Алканы имеют общую формулу CnH2n+2, где n – число атомов углерода.

Химическое строение.Валканах имеются два типа химических связей:

С–С и С–Н.

Связь С–С является ковалентной неполярной. Связь С–Н - ковалентная слабополярная, т.к. углерод и водород близки по электроотрицательности (2.5 - для углерода и 2.1 - для водорода). Образование ковалентных связей в алканах за счет общих электронных пар атомов углерода и водорода можно показать с помощью электронных формул:

Электронные и структурные формулы отражают химическое строение, но не дают представления о пространственном строении молекул, которое существенно влияет на свойства вещества.

Пространственное строение, т.е. взаимное расположение атомов молекулы в пространстве, зависит от направленности атомных орбиталей (АО) этих атомов. В углеводородах главную роль играет пространственная ориентация атомных орбиталей углерода, поскольку сферическая 1s-АО атома водорода лишена определенной направленности.

Пространственное расположение АО углерода в свою очередь зависит от типа его гибридизации. Насыщенный атом углерода в алканах связан с четырьмя другими атомами. Следовательно, его состояние соответствует sp3-гибридизации. В этом случае каждая из четырех sp3-гибридных АО углерода участвует в осевом (-) перекрывании с s-АО водорода или с sp3-АО другого атома углерода, образуя -связи С-Н или С-С.

Четыре -связи углерода направлены в пространстве под тетраэдрическим углом 109о28'. Поэтому молекула простейшего представителя алканов – метана СН4 – имеет форму тетраэдра, в центре которого находится атом углерода, а в вершинах – атомы водорода:

Валентный угол Н-С-Н равен 109о28’. Пространственное строение метана можно показать с помощью объемных (масштабных) и шаростержневых моделей.



Для записи удобно использовать пространственную (стереохимическую) формулу.

В молекуле следующего гомолога – этана С2Н6 – два тетраэдрических sp3- атома углерода образуют более сложную пространственную конструкцию:

Для молекул алканов, содержащих свыше 2-х атомов углерода, характерны изогнутые формы.



Номенклатура

По номенклатуре ИЮПАК названия предельных углеводородов характеризуются суффиксом –ан. Первые четыре углеводорода носят исторически сложившиеся названия, начиная с пятого в основе названия углеводорода лежит греческое название соответствующего числа углеродных атомов.
Углеводороды с нормальной цепью углеродных атомов имеют следующие названия:

СH4- метан
CH3- CH3- этан           
CH3-CH2- CH3- пропан
CH3-(CH2)2- CH3- бутан
CH3-(CH2)3- CH3- пентан
CH3-(CH2)4- CH3- гексан

CH3-(CH2)5- CH3- гептан
CH3-(CH2)6- CH3- октан
CH3-(CH2)7- CH3- нонан
CH3-(CH2)8- CH3- декан
CH3-(CH2)8- CH3- ундекан
CH3-(CH2)10- CH3- додекан

Названия углеводородов с разветвленными цепями строятся следующим образом:

1. За основу названия данного соединения берут название углеводорода, соответствующее числу углеродных атомов главной цепи.
Главной цепью углеродных атомов считают:
а) самую длинную;
б) самую сложную( с максимальным числом разветвлений). Если в углеводороде можно выделить две или несколько одинаково длинных цепей, то за главную выбирают ту из них, которая имеет наибольшее число разветвлений:

2. После установления главной цепи необходимо перенумеровать углеродные атомы. Нумерацию начинают с того конца цепи, к которому ближе примыкает любой из алкилов. Если разные алкилы находятся на равном удалении от обоих концов цепи, то нумерацию начинают с того конца, к которому ближе радикал с меньшим числом углеродных атомов (метил, этил, пропил и т.д.). Например:

4- изопропил-3-этилоктан (начало нумерации определяет этил)

 

3-метил 6-этилоктан (начало нумерации определяет метил)

Если же одинаковые радикалы, определяющие начало нумерации, находятся на равном удалении от обоих концов цепи, но с одной стороны их имеется большее число, чем с другой, то нумерацию начинают с того конца, где число разветвлений больше:



2, 2, 4- триметилпентан

2, 3, 6- триметилгептан

Называя соединение, сначала перечисляют заместители в алфавитном порядке( числительные не принимают во внимание), причем перед названием радикала ставят цифру, соответствующую номеру углеродного атома главной цепи, при котором находится данный радикал. После этого называют углеводород, соответствующей главной цепи углеродных атомов, отделяя слово от цифр дефисом.
Если углеводород содержит несколько одинаковых радикалов, то число их обозначают греческим числительным(ди, три, тетра и т. д.) и ставят перед названием этих радикалов, а их положение указывают, как обычно, цифрами, причем цифры разделяют запятыми, располагая в порядке их возрастания и ставят перед названием данных радикалов, отделяя их от него дефисом.

ЦИКЛОАЛКАНЫ

Названия циклоалканов образуют добавлением префикса цикло-к названию соответствующего неразветвленного предельного углеводорода с тем же числом углеродных атомов :


циклопропан


циклобутан

циклопентан

Заместители нумеруются в соответствии с их положением в цикле таким образом, чтобы сумма номеров была минимальной:


1, 4-диметилциклогексан


1-метил-3-этилциклопентан,
а не 1-метил-4-этилциклопентан

 


Изомерия


Изомеры – это вещества, имеющие одинаковый состав и одну и ту же молекулярную формулу и массу, но различное химическое строение, а потому обладающие различными физическими и химическими свойствами.

Структурная изомерия

Причиной проявления структурной изомерии в ряду алканов является способность атомов углерода образовывать цепи различного строения. Этот вид структурной изомерии называется изомерией углеродного скелета.

Структурные изомеры имеют одинаковый состав, но различаются химическим строением, при этом химические свойства изомеров - сходны, а физические - различны. Алканы с разветвленным строением из-за менее плотной упаковки молекул и, соответственно, меньших межмолекулярных взаимодействий, кипят при более низкой температуре, чем их неразветвленные изомеры.

В молекулах метана СН4, этана С2Н6 и пропана С3Н8 может быть только один порядок соединения атомов, то есть первые три члена гомологического ряда алканов изомеров не имеют. Для бутана С4Н10 возможны две структуры:





Один из этих изомеров (н-бутан) содержит неразветвленную углеродную цепь, а другой — изобутан — разветвленную (изостроение).

С увеличением числа атомов углерода в составе молекул увеличиваются возможности для разветвления цепи, т.е. количество изомеров растет с ростом числа углеродных атомов.

В ряду радикалов мы также встречаемся с явлением изомерии. Причем число изомеров у радикалов значительно больше, чем у соответствующих им алканов. Например, пропан, как известно, изомеров не имеет, а радикал пропил имеет два изомера: н-пропил и изо-пропил:

                       |
СН3—СН3—СН2—      и     Н3С—СН—СН3

Поворотная изомерия алканов

Вращение атомов вокруг s-связи не будет приводить к ее разрыву. В результате внутримолекулярного вращения по s-связям С–С молекулы алканов, начиная с этана С2Н6, могут принимать разные геометрические формы.
Различные пространственные формы молекулы, переходящие друг в друга путем вращения вокруг s-связей С–С, называют конформациями или поворотными изомерами (конформерами).
Поворотные изомеры молекулы представляют собой энергетически неравноценные ее состояния. Их взаимопревращение происходит быстро и постоянно в результате теплового движения. Поэтому поворотные изомеры не удается выделить в индивидуальном виде, но их существование доказано физическими методами. Некоторые конформации более устойчивы (энергетически выгодны) и молекула пребывает в таких состояниях более длительное время.


Физические свойства

В обычных условиях первые четыре члена гомологического ряда алканов – газы, C5–C17 – жидкости, а начиная с C18 – твердые вещества. Температуры плавления и кипения алканов их плотности увеличиваются с ростом молекулярной массы. Все алканы легче воды, в ней не растворимы, однако растворимы в неполярных растворителях (например, в бензоле) и сами являются хорошими растворителями.
Физические свойства некоторых алканов представлены в таблице.

Название

Формула

tпл °С

tкип °С

d204

Метан

СН4

-182,5

-161,5

0,4150

(при -164 °С)

Этан

С2Н6

-182,8

-88,6

0,5610

(при -100 °С)

Пропан

С3Н8

-187,7

-42

0,5853

(при -44,5 °С)

Бутан

С4Н10

-138,3

-0,5

0,6000

(при 0°С)

Пентан

C5H12

-129,7

+36,1

0,6262

Гексан

С6Н14

-95,3

68,7

0,6594

Гептан

С7H16

-90,6

98,4

0,6838

Октан

C8H18

-56,8

124,7

0,7025

Нонан

С9Н20

-53,7

150,8

0,7176

Декан

C10H22

-29,6

174,0

0,7300

Пентадекан

C15H32

+10

270,6

0,7683

Эйкозан

С20Н42

36,8

342,7

0,7780

(при 37 °С)

Пентакозан

C25H52

53,7

400

0,8012

Триаконтан

С30Н62

66,1

457

0,8097

* d420 – относительная плотность, т.е.
 отношение плотности вещества при 20С к плотности воды при 4С.

Химические свойства

Тривиальное (историческое) название алканов - "парафины" - означает "не имеющие сродства". Алканы химически малоактивны. Низкая реакционная способность алканов обусловлена очень малой полярностью связей С-С и С-Н в их молекулах вследствие почти одинаковой электроотрицательности атомов углерода и водорода. Предельные углеводороды в обычных условиях не взаимодействуют ни с концентрированными кислотами, ни со щелочами, ни даже с таким активным реагентом как перманганат калия.

Для них свойственны реакции замещения водородных атомов и расщепления.

В этих реакциях происходит гомолитическое расщепление кoвалентных связей, т. е. они осуществляются по свободно-радикальному (цепному) механизму.
Реакции вследствие прочности связей C–C и C–H протекают или при нагревании, или на свету, или с применением катализаторов.
Рассмотрим некоторые примеры реакций этого типа.

Галогенирование. Это одна из характерных реакций предельных углеводородов. Галогенирование алканов проходит поэтапно — за один этап замещается не более одного атома водорода:

  1. CH4 + Cl2 → CH3Cl + HCl (хлорметан)

  2. CH3Cl + Cl2 → CH2Cl2 + HCl (дихлорметан)

  3. CH2Cl2 + Cl2 → CHCl3 + HCl (трихлорметан)

  4. CHCl3 + Cl2 → CCl4 + HCl (тетрахлорметан).

Нитрование. Несмотря на то, что в обычных условиях алканы не взаимодействуют с концентрированной азотной кислотой, при нагревании их до 140°С с разбавленной (10%-ной) азотной кислотой под давлением осуществляется реакция нитрования – замещение атома водорода нитрогруппой (реакция М.И.Коновалова). В подобную реакцию жидкофазного нитрования вступают все алканы, однако скорость реакции и выходы нитросоединений низкие. Наилучшие результаты наблюдаются с алканами, содержащими третичные углеродные атомы.

Крекинг. При высокой температуре в присутствии катализаторов предельные углеводороды подвергаются расщеплению, которое называется крекингом. При крекинге происходит гомолитический разрыв углерод-углеродных связей с образованием насыщенных и ненасыщенных углеводородов с более короткими цепями.

CH3–CH2–CH2–CH3(бутан) ––400°C CH3–CH3(этан)+ CH2=CH2(этилен) 

Повышение температуры процесса ведет к более глубоким распадам углеводородов и, в частности, к дегидрированию, т.е. к отщеплению

водорода. Так, метан при 1500ºС приводит к ацетилену.
  2CH4  ––1500°C  H–C=C–H(ацетилен) + 3H2 

Изомеризация. Под влиянием катализаторов при нагревании углеводороды нормального строения подвергаются изомеризации - перестройке углеродного скелета с образованием алканов разветвленного строения.  

CH3–CH2–CH2–CH2–CH3(пентан)  ––t°,AlCl3CH3

CH–CH2–CH3(2- метилбутан)
 I
CH
3

Окисление. В обычных условиях алканыустойчивы к действию кислорода и окислителей. При поджигании на воздухе алканы горят, превращаясь в двуокись углерода и воду и выделяя большое количество тепла.

 CH4 + 2O2  ––пламя  CO2 + 2H2O
 C
5H12 + 8O2  ––пламя  5CO2 + 6H2



Нахождение в природе и получение

Основные источники алканов – нефть и природный газ.

Метан составляет основную массу природного газа, в нем присутствуют также в небольших количествах этан, пропан и бутан. Метан содержится в выделениях болот и угольных пластов. Наряду с легкими гомологами метан присутствует в попутных нефтяных газах. Эти газы растворены в нефти под давлением и находятся также над ней. Алканы составляют значительную часть продуктов переработки нефти. Содержатся в нефти и циклоалканы – они называются нафтенами (от греч. naphtha – нефть). В природе широко распространены также газовые гидраты алканов, в основном метана, они залегают в осадочных породах на материках и на дне океанов. Их запасы, вероятно, превышают известные запасы природного газа и в будущем могут случить источником метана и его ближайших гомологов. Алканы получают и пиролизом (коксованием) каменного угля и его гидрирования (получение синтетического жидкого топлива). Твердые алканы встречаются в природе в виде залежей горного воска – озокерита, в восковых покрытиях листьев, цветов и семян растений, входят в состав пчелиного воска.

В промышленности алканы получают каталитическим гидрированием оксидов углерода СО

Горный воск

и СО2 (метод Фишера – Тропша). В лаборатории метан можно получить нагреванием ацетата натрия с твердой щелочью: CH3COONa + NaOH → CH4 + Na2CO3, а также гидролизом некоторых карбидов: Al4C3 + 12H2O→ 3CH4 + 4Al(OH)3. Гомологи метана можно получить по реакции Вюрца, например: 2CH3Br + 2Na→CH3–CH3 + 2NaBr. В случае дигалогеналканов получаются циклоалканы, например: Br–CH2–(CH2)4–CH2Br + 2Na→цикло-C6H12 + 2NaBr. Алканы образуются также при декарбоксилировании карбоновых кислот и при электролизе их.

Применение алканов

Предельные углеводороды находят широкое применение в самых разнообразных сферах жизни и деятельности человека.

 Газообразные алканы (метан и пpопан-бутановая смесь) используются в качестве ценного топлива.

 Жидкие углеводороды составляют значительную долю в моторных и ракетных топливах и используются в качестве растворителей.

 Вазелиновое масло (смесь жидких углеводородов с числом атомов углерода до 15) - пpозpачная жидкость без запаха и вкуса, используется в медицине, паpфюмеpии и косметике.

 Вазелин (смесь жидких и твердых предельных углеводородов с числом углеродных атомов до 25) применяется для приготовления мазей, используемых в медицине.

 Парафин (смесь твердых алканов С1935) - белая твердая масса без запаха и вкуса (т.пл. 50-70 °C) - применяется для изготовления свечей, пропитки спичек и упаковочной бумаги, для тепловых пpоцедуp в медицине. Служит сырьём при получении органических кислот и спиртов, моющих средств и поверхностно-активных веществ.

 Нормальные предельные углеводороды средней молекулярной массы используются как питательный субстрат в микробиологическом синтезе белка из нефти.

 Большое значение имеют галогенопроизводные алканов, которые используются как растворители, хладоагенты и сырье для дальнейших синтезов.  В современной нефтехимической промышленности предельные углеводороды являются базой для получения разнообразных органических соединений, важным сырьем в процессах получения полупродуктов для производства пластмасс, каучуков, синтетических волокон, моющих средств и многих других веществ.





6

Задания по теме для самостоятельного решения

Задание 1

(2 балла)

Верны ли следующие суждения об углеводородах?

А. Пропан и бутан являются гомологами.

Б. Общая формула гомологического ряда алканов – CnH2n+2

          1) верно только А;

          2) верно только Б;

          3) верны оба суждения;

          4) оба суждения неверны.

Задание 2

(2 балла)

К какому классу органических соединений относится углеводород С34Н66:

1) алканов; 2) циклоалканов; 3) алкенов; 4) алкинов ?

Задание 3

(2 балла)

Изомером циклопентана является: 

1) циклобутан;

2) пентадиен-1,3;

3) пентин-1;

4) пентен-2.

Проверить правильность выполнения заданий вы можете в автоматическом режиме в разделе домашние задания на странице с курсом "Химия Подготовка к ЕГЭ 2017"
Следующий урок на тему " Алкены и алкины."