Задача 17. Текстовые задачи экономического содержания.

На занятии мы продолжим разговор о задаче 17, рассмотрим способы решения заданий с экономическим содержанием, вспомним, как составлять уравнения в  сложных экономических задачах.

Конспект занятия "Задача 17. Текстовые задачи экономического содержания."

Занятие 4. Задачи на оптимальный выбор.

В задаче 17 встречаются не только задания на проценты, кредиты и вклады, но и задачи на оптимальный выбор, это задачи, требующие знаний не столько в составлении уравнений, сколько в составлении и умении оценить граничные значения функции. Для этого нам нужно знать способы нахождения наименьшего и наибольшего значения функции.

Для нахождения наибольшего и наименьшего значений можно найти производную составленной функции, вычислить ее нули и посмотреть, как изменяются знаки при прохождении через эти точки. Если задача найти наибольшее значение – ищем точку максимума и вычисляем значение функции в этой точке. Для нахождения наименьшего значения используем точку минимума.

Полезно знать при решении таких задач и способы, позволяющие обойтись без производной. Если составленная функция квадратичная – ее максимум и минимум зависят от направления ветвей и координат вершины параболы . Если ветви вверх, вершина параболы – точка минимума, если вниз – наоборот.

Если составленная функция линейная, то речь пойдет о наибольшем и наименьшем значении функции на отрезке, а их она принимает только на концах исследуемого отрезка.

Также не лишним будет вспомнить некоторые классические неравенства, помогающие при решении задач, например, неравенство о взаимно обратных числах и неравенство о средних.

При положительном a , причем равенство достигается только при . Если же а отрицательно, то , где равенство возможно лишь при .

При неотрицательных a и b среднее арифметическое не меньше среднего геометрического (неравенство Коши): . Равенство достигается, если a=b.

Как и на предыдущих занятиях, стараемся пользоваться таблицей при составлении математической модели задачи.


Задачи к уроку.

Задание 1. В 1-е классы поступает 45 человек: 20 мальчиков и 25 девочек. Их распределили по двум классам: в одном должно получиться 22 человека, а в другом ― 23. После распределения посчитали процент девочек в каждом классе и полученные числа сложили. Каким должно быть распределение по классам, чтобы полученная сумма была наибольшей? В ответ запишите полученную сумму процентов, округлив ее до целых чисел.


Задание 2. Алексей вышел из дома на прогулку со скоростью v км/ч. После того, как он прошел 6 км, из дома следом за ним выбежала собака Жучка, скорость которой была на 9 км/ч больше скорости Алексея. Когда Жучка догнала хозяина, они повернули назад и вместе возвратились домой со скоростью 4 км/ч. Найдите значение v, при котором время прогулки Алексея окажется наименьшим. Сколько при этом составит время его прогулки?

Задание 3. В распоряжении начальника имеется бригада рабочих в составе 24 человек. Их нужно распределить на день на два объекта. Если на первом объекте ра­ботает t человек, то их суточная зарплата составляет 4t2 у. е. Если на втором объекте работает t человек, то их суточная зарплата составляет t2 у. е. Как нужно распределить на эти объекты бригаду рабочих, чтобы выплаты на их суточную зарплату оказались наименьшими? Сколько у. е. в этом случае придется заплатить рабочим?


Задание 4. В бас­сейн про­ве­де­ны три трубы. Пер­вая труба на­ли­ва­ет 30 м3 воды в час. Вто­рая труба на­ли­ва­ет в час на 3V м3мень­ше, чем пер­вая (0 V V м3 боль­ше пер­вой. Сна­ча­ла пер­вая и вто­рая трубы, ра­бо­тая вме­сте, на­ли­ва­ют 30% бас­сей­на, а затем все три трубы, ра­бо­тая вме­сте, на­ли­ва­ют остав­ши­е­ся 0,7 бас­сей­на. При каком зна­че­нии V бас­сейн быст­рее всего на­пол­нит­ся ука­зан­ным спо­со­бом?


Задание 5. Лео­нид яв­ля­ет­ся вла­дель­цем двух за­во­дов в раз­ных го­ро­дах. На за­во­дах про­из­во­дят­ся аб­со­лют­но оди­на­ко­вые при­бо­ры, но на за­во­де, рас­по­ло­жен­ном во вто­ром го­ро­де, ис­поль­зу­ет­ся более со­вер­шен­ное обо­ру­до­ва­ние.

В ре­зуль­та­те, если ра­бо­чие на за­во­де, рас­по­ло­жен­ном в пер­вом го­ро­де, тру­дят­ся сум­мар­но 4t3 часов в не­де­лю, то за эту не­де­лю они про­из­во­дят t при­бо­ров; если ра­бо­чие на за­во­де, рас­по­ло­жен­ном во вто­ром го­ро­де, тру­дят­ся сум­мар­но t3часов в не­де­лю, они про­из­во­дят t при­бо­ров.  

За каж­дый час ра­бо­ты (на каж­дом из за­во­дов) Лео­нид пла­тит ра­бо­че­му 1 ты­ся­чу руб­лей. Не­об­хо­ди­мо, чтобы за не­де­лю сум­мар­но про­из­во­ди­лось 20 при­бо­ров. Какую наи­мень­шую сумму при­дет­ся тра­тить вла­дель­цу за­во­дов еже­не­дель­но на  опла­ту труда ра­бо­чих?


Задание 6. В двух об­ла­стях есть по 160 ра­бо­чих, каж­дый из ко­то­рых готов тру­дить­ся по 5 часов в сутки на до­бы­че алю­ми­ния или ни­ке­ля. В пер­вой об­ла­сти один ра­бо­чий за час до­бы­ва­ет 0,1 кг алю­ми­ния или 0,1 кг ни­ке­ля. Во вто­рой об­ла­сти для до­бы­чи x кг алю­ми­ния в день тре­бу­ет­ся x2 че­ло­ве­ко-часов труда, а для до­бы­чи у кг ни­ке­ля в день тре­бу­ет­ся у2 че­ло­ве­ко-часов труда.

Для нужд про­мыш­лен­но­сти можно ис­поль­зо­вать или алю­ми­ний, или ни­кель, причём 1 кг алю­ми­ния можно за­ме­нить 1 кг ни­ке­ля. Какую наи­боль­шую массу ме­тал­лов можно за сутки сум­мар­но до­быть в двух об­ла­стях?


Задание 7. На каж­дом из двух за­во­дов ра­бо­та­ет по 100 че­ло­век. На пер­вом за­во­де один ра­бо­чий из­го­тав­ли­ва­ет за смену 3 де­та­ли А или 1 де­таль В. На вто­ром за­во­де для из­го­тов­ле­ния t де­та­лей (и А, и В) тре­бу­ет­ся t2 че­ло­ве­ко-смен. Оба за­во­да по­став­ля­ют де­та­ли на ком­би­нат, где со­би­ра­ют из­де­лие, при­чем для его из­го­тов­ле­ния нужна 1 де­таль А и 3 де­та­ли В. При этом за­во­ды до­го­ва­ри­ва­ют­ся между собой из­го­тав­ли­вать де­та­ли так, чтобы можно было со­брать наи­боль­шее ко­ли­че­ство из­де­лий. Сколь­ко из­де­лий при таких усло­ви­ях может со­брать ком­би­нат за смену?


Задание 8. Антон яв­ля­ет­ся вла­дель­цем двух за­во­дов в ра­зных го­ро­дах. На за­во­дах про­из­во­дит­ся аб­со­лют­но оди­на­ко­вые то­ва­ры при ис­поль­зо­ва­нии оди­на­ко­вых тех­но­ло­гий. Если ра­бо­чие на одном из за­во­дов тру­дят­ся сум­мар­но t2 часов в не­де­лю, то за эту не­де­лю они про­из­ведут t еди­ниц то­ва­ра.

За каж­дый час ра­бо­ты на за­во­де, рас­по­ло­жен­ном в пер­вом го­ро­де, Антон пла­тит ра­бо­че­му 250 руб­лей, а на за­во­де, рас­по­ло­жен­ном во вто­ром го­ро­де, — 200 руб­лей.

Антон готов вы­де­лять 900 000 руб­лей в не­де­лю на опла­ту труда ра­бо­чих. Какое наи­боль­шее ко­ли­че­ство еди­ниц то­ва­ра можно про­из­ве­сти за не­де­лю на этих двух за­во­дах?


Задание 9. Вла­ди­мир яв­ля­ет­ся вла­дель­цем двух за­во­дов в ра­зных го­ро­дах. На за­во­дах про­из­во­дят­ся аб­со­лют­но оди­на­ко­вые то­ва­ры, но на за­во­де, рас­по­ло­жен­ном во вто­ром го­ро­де, ис­поль­зу­ет­ся более со­вер­шен­ное обо­ру­до­ва­ние. В ре­зуль­та­те, если ра­бочие на за­во­де, рас­по­ло­жен­ном в пер­вом го­ро­де, трудятся сум­мар­но t 2 часов в не­де­лю, то за эту не­де­лю они про­из­во­дят 2t еди­ниц то­ва­ра; если ра­бо­чие на за­во­де, рас­по­ло­жен­ном во вто­ром го­ро­де, тру­дят­ся сум­мар­но t 2 часов в не­де­лю, то за эту не­де­лю они про­из­во­дят 5t еди­ниц то­ва­ра.

За каж­дый час ра­бо­ты (на каж­дом из за­во­дов) Вла­ди­мир пла­тит ра­бо­че­му 500 руб­лей. Вла­ди­ми­ру нужно каж­дую не­де­лю про­из­во­дить 580 еди­ниц то­ва­ра. Какую наи­мень­шую сумму при­дет­ся тра­тить еже­не­дель­но на опла­ту труда ра­бо­чих?


Задание 10. Баржа гру­зо­подъ­ем­но­стью 134 тонны пе­ре­во­зит кон­тей­не­ры типов А и В. Ко­ли­че­ство за­гру­жен­ных на баржу кон­тей­не­ров типа В не менее чем на 25% пре­вос­хо­дит за­гру­жен­ных кон­тей­не­ров типа А. Вес и сто­и­мость од­но­го кон­тей­не­ра типа А со­став­ля­ет 2 тонны и 5 млн. руб., кон­тей­не­ра типа В – 5 тонн и 7 млн. руб. со­от­вет­ствен­но. Опре­де­ли­те наи­боль­шую воз­мож­ную сум­мар­ную сто­и­мость (в млн. руб.) всех кон­тей­не­ров, пе­ре­во­зи­мых бар­жей при дан­ных усло­ви­ях.

Задания по теме для самостоятельного решения

Задание 1

(3 балла)

Про­из­вод­ство x тыс. еди­ниц про­дук­ции об­хо­дит­ся в q = 0,5x2 + x + 7 млн руб­лей в год. При цене p тыс. руб­лей за еди­ни­цу го­до­вая при­быль от про­да­жи этой про­дук­ции (в млн руб­лей) со­став­ля­ет px − q. При каком наи­мень­шем зна­че­нии p через три года сум­мар­ная при­быль со­ста­вит не менее 75 млн руб­лей? В ответ запишите полученное значение p.

Задание 2

(3 балла)

Стро­и­тель­ство но­во­го за­во­да стоит 78 млн руб­лей. За­тра­ты на про­из­вод­ство х тыс. ед. про­дук­ции на таком за­во­де равны  млн руб­лей в год. Если про­дук­цию за­во­да про­дать по цене р тыс. руб­лей за еди­ни­цу, то при­быль фирмы (в млн руб­лей) за один год со­ста­вит . Когда завод будет по­стро­ен, фирма будет вы­пус­кать про­дук­цию в таком ко­ли­че­стве, чтобы при­быль была наи­боль­шей. При каком наи­мень­шем зна­че­нии р стро­и­тель­ство за­во­да оку­пит­ся не более, чем за 3 года?

Задание 3

(3 балла)

Два ве­ло­си­пе­ди­ста рав­но­мер­но дви­жут­ся по вза­им­но пер­пен­ди­ку­ляр­ным до­ро­гам по на­прав­ле­нию к пе­ре­крест­ку этих дорог. Один из них дви­жет­ся со ско­ро­стью 40 км/ч и на­хо­дит­ся на рас­сто­я­нии 5 км от пе­ре­крест­ка, вто­рой дви­жет­ся со ско­ро­стью 30 км/ч и на­хо­дит­ся на рас­сто­я­нии 3 км от пе­ре­крест­ка. Через сколь­ко минут рас­сто­я­ние между ве­ло­си­пе­ди­ста­ми ста­нет наи­мень­шим? Ка­ко­во будет это наи­мень­шее рас­сто­я­ние? В ответ запишите найденное расстояние в метрах.

Проверить правильность выполнения заданий вы можете в автоматическом режиме в разделе домашние задания на странице с курсом "Математика Подготовка к ЕГЭ, (бывшая С) 2017"