Азотосодержащие вещества. Белок.

На этом занятии будут рассмотрены основные химические свойства  азотосодержащих органических веществ аминов, аминокислот и белков. Будут показаны подробные решения расчетных задач и тестов ЕГЭ по заданной теме.

Конспект занятия "Азотосодержащие вещества. Белок."



АМИНЫ – класс соединений, представляющий собой органические производные аммиака, в котором один, два или три атома водорода замещены органическими группами. Отличительный признак – наличие фрагмента R–N

Классификация аминов

Классификация аминов разнообразна и определяется тем, какой признак строения взят за основу.

1.В зависимости от числа органических групп, связанных с атомом азота, различают:

  • Первичные амины – одна органическая группа у азота RNH2

  • Вторичные амины – две органических группы у азота R2NH, органические группы могут быть различными R'R"NH

  • третичные амины – три органических группы у азота R3N или R'R"R"'N

2.По типу органической группы, связанной с азотом, различают алифатические СH3– N6H5– N

3.По числу аминогрупп в молекуле амины делят на моноамины СH3 – NН2, диамины H2N(СH2)22, триамины и т.д.

Номенклатура аминов

К названию органических групп, связанных с азотом, добавляют слово «амин», при этом группы упоминают в алфавитном порядке, например, СН3NHС3Н7 – метилпропиламин, СН3N(С6Н5)2 – метилдифениламин. Правила допускают также составлять название, взяв за основу углеводород, в котором аминогруппу рассматривают как заместитель. В таком случае ее положение указывают с помощью числового индекса: С5Н3С4Н2С3Н(NН22Н2С1Н3 – 3-аминопентан (верхние числовые индексы синего цвета указывают порядок нумерации атомов С). Для некоторых аминов сохранились тривиальные (упрощенные) названия: С6Н5NH2 – анилин (название по правилам номенклатуры – фениламин).

В некоторых случаях применяют устоявшиеся названия, которые представляют собой искаженные правильные названия: Н2NСН2СН2ОН – моноэтаноламин (правильно – 2-аминоэтанол); (ОНСН2СН2)2NH – диэтаноламин, правильное название – бис(2-гидроксиэтил)амин.

Физические свойства аминов

Первые представители ряда аминов – метиламин CH3NH2, диметиламин (CH3)2NH, триметиламин (CH3)3N и этиламин C2H5NH2.

При комнатной температуре газообразные.

При увеличении числа атомов в R амины становятся жидкостями, а при увеличении длины цепи R до 10 атомов С – кристаллическими веществами.













Растворимость аминов в воде убывает по мере увеличения длины цепи R и при возрастании числа органических групп, связанных с азотом (переход к вторичным и третичным аминам).

Запах аминов напоминает запах аммиака, высшие (с большими R) амины практически лишены запаха.

Химические свойства аминов













1.Отличительная способность аминов – присоединять нейтральные молекулы , с образованием органоаммониевых солей, подобных аммонийным солям в неорганической химии. Для образования новой связи азот предоставляет неподеленную электронную пару, исполняя роль донора. Участвующий в образовании связи протон Н+ (от галогеноводорода) играет роль акцептора (приемника), такую связь называют донорно-акцепторной . Возникшая ковалентная связь N–H полностью эквивалентна имеющимся в амине связям N–H. (смотрите приложение 1)

2.Третичные амины также присоединяют HCl, но при нагревании полученной соли в растворе кислоты она распадается, при этом R отщепляется от атома N:

(C2H5)3N + HCl ® [(C2H5)5NH]Сl

[(C2H5)3NH]Сl ® (C2H5)2NH + C2H5Сl

При сравнении этих двух реакций видно, что C2H5-группа и Н, как бы меняются местами, в итоге из третичного амина образуется вторичный.

Растворяясь в воде, амины по такой же схеме захватывают протон, в результате в растворе появляются ионы ОН–, что соответствует образованию щелочной среды, ее можно обнаружить с помощью обычных индикаторов.

C2H5NH2 + H2O ® [C2H5NH3]+ + OH

3.С образованием донорно-акцепторной связи амины могут присоединять не только HCl, но и галогеналкилы RCl, при этом образуется новая связь N–R, которая также эквивалентна уже имеющимся. Если в качестве исходного взять третичный амин, то получается соль тетраалкиламмония (четыре группы R у одного атома N):

(C2H5)3N + C2H5I ® [(C2H5)4N]I

Эти соли, растворяясь в воде и некоторых органических растворителях, диссоциируют (распадаются), образуя ионы:

[(C2H5)4N]I ® [(C2H5)4N]+ + I

Такие растворы, как и все растворы, содержащие ионы, проводят электрический ток. В тетраалкиламмониевых солях можно заменить галоген НО-группой:

[(CH3)3N]Cl + AgOH ® [(CH3)4N]OH + AgCl

Получающийся гидроксид тетраметиламмония представляет собой сильное основание, по свойствам близкое к щелочам.

4.Первичные и вторичные амины взаимодействуют с азотистой кислотой HON=O, однако реагируют они различным образом. Из первичных аминов образуются первичные спирты:

C2H5NH2 + HNO2 ® C2H5OH + N2 +H2O

В отличие от первичных, вторичные амины образуют с азотистой кислотой желтые, трудно растворимые нитрозамины – соединения, содержащие фрагмент N–N = O:

(C2H5)2NH + HNO2 ® (C2H5)2N–N=O + H2O

Третичные амины при обычной температуре с азотистой кислотой не реагируют, таким образом, азотистая кислота является реагентом, позволяющим различить первичные, вторичные и третичные амины.

5.При конденсации аминов с карбоновыми кислотами образуются амиды кислот – соединения с фрагментом –С(О)N

Конденсация аминов с альдегидами и кетонами приводит к образованию так называемых оснований Шиффа – соединений, содержащих фрагмент –N=C

6.При взаимодействии первичных аминов с фосгеном Cl2С=O образуются соединения с группировкой –N=C=O, называемые изоцианатами .

Анилин

Среди ароматических аминов наиболее известен анилин (фениламин) С6Н5NH2. По свойствам он близок к алифатическим аминам, но его основность выражена слабее – в водных растворах он не образует щелочную среду. Как и алифатические амины, с сильными минеральными кислотами он может образовывать аммониевые соли [С6Н5NH3]+Сl–. При взаимодействии анилина с азотистой кислотой (в присутствии HCl) образуется диазосоединение, содержащее фрагмент R–N=N, оно получается в виде ионной соли, называемой солью диазония. Таким образом, взаимодействие с азотистой кислотой идет не так, как в случае алифатических аминов. Бензольное ядро в анилине обладает реакционной способностью, характерной для ароматических соединений , при галогенировании атомы водорода в орто- и пара-положениях к аминогруппе замещаются, получаются хлоранилины с различной степенью замещения . Действие серной кислоты приводит к сульфированию в пара-положение к аминогруппе, образуется так называемая сульфаниловая кислота .

Получение аминов

При взаимодействии аммиака с галогеналкилами, например RCl, образуется смесь первичных, вторичных и третичных аминов. Образующийся побочный продукт HCl присоединяется к аминам, образуя аммониевую соль, но при избытке аммиака соль разлагается, что позволяет проводить процесс вплоть до образования четвертичных аммониевых солей . В промышленности алифатические амины получают каталитическим взаимодействием спиртов с NH3 при 300–500° С и давлении 1–20 МПа, в результате получают смесь первичных, вторичных и третичных аминов.

При взаимодействии альдегидов и кетонов с аммонийной солью муравьиной кислоты HCOONH4 образуются первичные амины , а реакция альдегидов и кетонов с первичными аминами (в присутствии муравьиной кислоты НСООН) приводит к вторичным аминам .

Нитросоединения (содержащие группу –NO2) при восстановлении образуют первичные амины. Этот метод, предложенный Н.Н.Зининым, мало применяется для алифатических соединений, но важен для получения ароматических аминов и лег в основу промышленного производства анилина .

  • Как отдельные соединения амины применяются мало, например, в быту используется полиэтиленполиамин [-C2H4NH-]n (торговое название ПЭПА) как отвердитель эпоксидных смол. Основное применение аминов – как промежуточные продукты при получении различных органических веществ. Ведущая роль принадлежит анилину, на основе которого производится широкий спектр анилиновых красителей, причем цветовая «специализация» закладывается уже на стадии получения самого анилина.

  • Алифатические диамины – исходные соединения для получения полиамидов, например, нейлона , широко применяемого для изготовления волокон, полимерных пленок, а также узлов и деталей в машиностроении (полиамидные зубчатые передачи).

  • Из алифатических диизоцианатов получают полиуретаны, которые обладают комплексом технически важных свойств: высокой прочностью в сочетании с эластичностью и очень высоким сопротивлением истиранию (полиуретановые обувные подошвы), а также хорошей адгезией к широкому кругу материалов (полиуретановые клеи). Широко их применяют и во вспененной форме (пенополиуретаны).



  • На основе сульфаниловой кислоты синтезируют противовоспалительные лекарственные препараты сульфаниламиды.

Задания по теме для самостоятельного решения

Задание 1

(2 балла)

В перечне веществ, формулы которых:

А)

CH3CONH2

Б)

C6H5NH2

В)

(CH3)2NH

Г)

C6H5NO2

Д)

NH3

Е)

CH3NH2,

к аминам относятся:

 1)

АБВ;

 2)

БВЕ;

 3)

ВГД;

4)

БВД.

Задание 2

(2 балла)

Гомологом метиламина является:

1)метаналь

2)метанол

3)этиламин

4)фениламин

Задание 3

(2 балла)

В водном растворе метиламина среда раствора:

1)кислая

2)нейтральная

3)щелочная

4)слабо кислая

Проверить правильность выполнения заданий вы можете в автоматическом режиме в разделе домашние задания на странице с курсом "Химия Подготовка к ЕГЭ 2017"
Следующий урок на тему " Итоговое занятие."
Предыдущий урок на тему " Углеводы."